SYRIAN PRIVATE UNIVERSITY

Electric Circuits I

 Dro Eng. Hassan M. Ahmad
DC Circuits Course Outline

1. Basic Concepts
2. Basic Laws
3. Methods of Analysis
4. Circuit Theorems
5. Operational Amplifiers
6. Capacitors and Inductors
7. First-Order Circuits
8. Second-Order Circuits
9. Magnetic Circuits

Assessment

Coursework:
Activity
2 Tests
Practice
Examination:
50%
10%
20% (10% each)

To pass the course, at least 25% of coursework AND examination marks are required.

Book List

Text books

1. C. K. Alexander and M.N.O. Sadiku. Fundamentals of Electric Circuits. 6-th Ed., McGraw-Hill, 2017.
2. Robert L. Boylested, Introductory Circuit Analysis, (7/9/10) 11-th Ed. Prentice Hall, 2007.

References

1. James W. Nilsson. Electric circuits, 9-th Ed. Prentice Hall, 2011.
2. Allan H. Robbins and Wilhelm C. Miller. Circuit Analysis: Theory and Practice, Fifth Edition. Cengage Learning 2013.

Chapter 1 Basic Concepts

1.1 Systems of Units.
1.2 Electric Charge
1.3 Current.
1.4 Voltage.
1.5 Power and Energy.
1.6 Circuit Elements.

1.1 System of Units

Six basic units

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	Kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd

The derived units commonly used in electric circuittheory

Quantity	Unit	Symbol
	coulomb	C
electric charge		
electric potential		
resistance	volt	V
conductance	ohm	Ω
inductance	siemens	S
capacitance	henry	H
frequency	farad	F
force	hertz	$\mathbf{H z}$
energy, work	newton	N
power	joule	J
magnetic flux	watt	\mathbf{W}
magnetic fiux density	weber	$\mathbf{W b}$

$600,000,000 \mathrm{~mm}$
$600,000 \mathrm{~m}$
600 km

Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples and
submultiples of SI units

1.2 Electric Charges

- Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- The charge e on one electron is negative and equal in magnitude to $1.602 \times 10^{-19} \mathrm{C}$ which is called as electronic charge.
- In 1 C of charge, there are $1 /\left(1.602 \times 10^{-19}\right)=6.24 \times 10^{18} \quad$ electrons.
- The charges that occur in nature are integral multiples of the electronic chârge $\quad e=-1.602 \times 10^{-19} \mathrm{C}$.

1.3 Current

- Conducting process: positive charges (+) move in one direction while negative charges (-) move in the opposite direction. This motion of charges creates electric current.
- The current flow is the movement of positive charges.

- Electric current is the time rate of change of charge, measured in amperes (A).
- Electric current $i=d q / d t$. The unit of ampere can be derived as 1 $\mathrm{A}=1 \mathrm{C} / \mathrm{s}$.
- The charge transferred between time t_{0} and t is obtained by

$$
Q=\int_{t_{0}}^{t} i d t
$$

1.3.1 Types of Current

- A direct current (dc) is a current that remains constant with time, Fig. (a).
- An alternating current (ac) is a current that varies sinusoidally with time. (reverse direction), Fig. (b).
- A current may be represented positively or negatively, Fig. (c).

(a)

(b)

(c)

Example 1.1

How much charge is represented by 4,600 electrons?

Solution:

Each electron has $-1.602 \times 10^{-19} \mathrm{C}$. Hence 4,600 electrons will have

$$
-1.602 \times 10^{-19} \mathrm{C} / \text { electron } \times 4600 \text { electrons }=-7.369 \times 10^{-16} \mathrm{C}
$$

**

Example 1.2

The total charge entering a terminal is given by $q=5 t \sin (4 \pi t) \mathrm{mC}$. Calculate the current at $t=0.5 \mathrm{~s}$.
Solution:

$$
\begin{aligned}
& i=\frac{d q}{d t}=\frac{d}{d t}(5 t \sin (4 \pi t)) m C / s=(5 \sin (4 \pi t)+20 \pi t \cos (4 \pi t)) \mathrm{mA} \\
& t=0.5 s \Rightarrow i=5 \sin (2 \pi)+10 \pi \cos (2 \pi)=0+10 \pi=31.42 \mathrm{~mA}
\end{aligned}
$$

Example 1.3

Determine the total charge entering a terminal between $t=1 \mathrm{~s}$ and $t=2 \mathrm{~s}$ if the current passing the terminal is $i=\left(3 t^{2}-t\right) \mathrm{A}$.
Solution:

$$
Q=\int_{t=1}^{2} i d t=\int_{t=1}^{2}\left(3 t^{2}-t\right) d t=\left.\left(t^{3}-\frac{t^{2}}{2}\right)\right|^{2}=(8-2)-\left(1-\frac{1}{2}\right)=5.5 \mathrm{C}
$$

* $* *$

Example 1.4

A conductor has a constant current of 5 A . How many electrons pass a fixed point on the conductor in one minute?

Solution:

Total no. of charges pass in 1 min is given by:

$$
5 \mathrm{~A}=(5 \mathrm{C} / \mathrm{s})(60 \mathrm{~s} / \mathrm{min})=300 \mathrm{C} / \mathrm{min}
$$

Total no. of electronies pass in 1 min is given

$$
\frac{300 \mathrm{C} / \mathrm{min}}{1.602 \times 10^{-19} \mathrm{C} / \text { electron }}=1.87 \times 10^{21} \text { electrons } / \mathrm{min}
$$

1.4 Voltage

- Voltage (or potential difference) is the energy required to move a unit charge from a reference point $a(-)$ to another point $b(+)$, measured in volts (V).
- Mathematically, $v_{a b}=\frac{d w}{d q}$ (Volt)
 w is energy in joultes (J) and q is charge in coulomb (C).
- The plus (+) and minus (-) signs are used to define reference voltage polarity.
- Electric voltage, v_{ab}, is always across the circuit element or between two points in a circuit.
- $v_{\mathrm{ab}}>0$ means the potential of a is higher than potential of b.
- $v_{\mathrm{ab}}<0$ means the potential of a is lower than potential of b.

For example,

(a)

(b)
\square In Fig.(a), point a is 49 V above point b;
\square In Fig.(b), point b is -9 V above point a.
\square We may say that in Fig.(a), there is a
9-V voltage drop from a to b or equivalently a 9-V voltage rise from b to a.

1.5 Power and Energy

- Power is the time rate of expending or absorbing energy, measured in watts (W). $\quad p=\frac{d w}{d t}=\frac{d w}{d q} \cdot \frac{d q}{d t}=v i$
- Mathematical expression:
- The power p is a time-varying quantity and is called the instantaneous power.
- Passive sign convention.
- Fig. (a): the element is absorbing power.
- Fig. (b): the element is supplying power.
+ Power absorbed $=-$ Power supplied

(a)

(b)
- The law of conservation of energy:

$$
\sum p=0 \text { at any time }
$$

- Energy is the capacity to do work, measured in joules (J).
- Mathematical expression $w=\int_{t_{0}} p d t=\int_{t_{0}}^{t} v i d t$
- The electric power utility companies measure energy in watthours (Wh), where
$1 \mathrm{~Wh}=3600 \mathrm{~J}$

Example 1.5

An energy source forces a constant current of 2 A for 10 s fo flow through a light bulb. If 2.3 kJ is given off in the form of light and heat energy, calculate the voltage drop across the bulb.

Solution:

- The total charge is $\Delta q=i \Delta t=2 \times 10=20 \mathrm{C}$
- The voltage drop is $v=\frac{\Delta w}{\Delta q}=\frac{2.3 \times 10^{3}}{20}=115 \mathrm{~V}$

Example 1.6

Find the power delivered to an element at $t=3 \mathrm{~ms}$ if the current entering its positive terminal is $i=5 \cos (60 \pi t) \mathrm{A}$, and the voltage is:
Solution:
a) $v=3 i ; b) v=3 d i / d t$
a) The voltage is $v=3 i=15 \cos 60 \pi t$; hence, the power is

$$
\begin{array}{cc}
& p=v i=75 \cos ^{2}(60 \pi t) \mathrm{W} \\
\text { At } \mathrm{t}=3 \rightarrow \quad p=75 \cos ^{2}\left(60 \pi \times 3 \times 10^{-3}\right)=53.48 \mathrm{~W}
\end{array}
$$

b) We find the voltage and the power as

$$
\begin{aligned}
& \hat{v}=3 \frac{d i}{d t}=3(-60 \pi) 5 \sin 60 \pi t=-900 \pi \sin 60 \pi t \mathrm{~V} \\
& p=v i=-4500 \pi \sin 60 \pi t \cos 60 \pi t \mathrm{~W}
\end{aligned}
$$

- At $t=3 \rightarrow$

$$
\begin{aligned}
p & =-4500 \pi \sin 0.18 \pi \cos 0.18 \pi W \\
& =-14137.167 \sin 32.4^{\circ} \cos 32.4^{\circ}=-6.396 \mathrm{~kW}
\end{aligned}
$$

Example 1.7

How much energy does a $100-\mathrm{W}$ electric bulb consume in two hours?
Solution:

$$
\begin{aligned}
& w=p t=100(\mathrm{~W}) \times 2(\mathrm{~h}) \times 60(\mathrm{~min} / \mathrm{h}) \times 60(\mathrm{~s} / \mathrm{min}) \\
& 720000 \mathrm{~J}=720 \mathrm{~kJ}
\end{aligned}
$$

This is the same as

$$
w=p t=100 \mathrm{~W} \times 2 \mathrm{~h}=200 \mathrm{~Wh}
$$

1.6 Circuit Elements

- There are two types of elements:
- An active element is capable of generating energy.
- A passive is not capable of generating energy.
- Examples of passive elements are resistors, capacitors, and inductors.
- Examples of active elements incłude generators, batteries, and operational amplifiers.
- The most important active elements are voltage or current sources that generally deliver power to the circuit connected to them.

1.6.1 Kinds of sources

1. Ideal independent source is an active element that provides a specified voltage or current that is completely independent of other circuit elements.

- Physical sources such as batteries and generators.
- Symbols for independent voltage sources:
- Fig.(a), used for constant or timevarying voltage,
- Fig.(b), used for constant voltage (dc).
- Symbol for independent current source, Fig. (c), where the arrow indicates the direction of current i.

(a)

(b)

2. Ideal dependent (or controlled) source is an active element in which the source quantity is controlled by another voltage or current.

- Dependent sources are usually designated by diamond-shaped symbols:
- Fig.(a) dependent voltage source,
- Fig. (b) dependent curent source.
- There are four possible types of dependent sources

(a)

(b)

1. A voltage-controlled voltage source (VCVS).
2. A current-controlled voltage source (CCVS).
3. A voltage-controlled current source (VCCS).
4. Acurrent-controlled current source (CCCS).

Example 1.8

Calculate the power supplied or absorbed by each element in Fig.

Solution

We apply the sign convention for power.
For p_{1}, the 5 -A current is out of the positive terminal (or into the negative terminal);
hence, $p_{1}=20(-5)=-100 \mathrm{~W}$ (Supplied power)

For p_{2} and p_{3}, the current flows into the positive terminal of the element in each case.

$$
p_{2}=12(5)=60 \mathrm{~W} \text { (Absorbed power); } p_{3}=8(6)=48 \mathrm{~W} \text { (Absorbed power) }
$$

For p_{4}, we should note that the voltage is 8 V (positive at the top), the same as the voltage for p_{3} since both the passive element and the dependent source are connected to the same terminals. (Remember that v oltage is always measured across an element in a circuit.) Since the current flows out of the positive terminal,

$$
\left.p_{4}=8(-0.2 I)=8(-0.2 \times 5)=-8 \mathrm{~W} \quad \text { (Supplied power }\right)
$$

$$
\sum p_{i}=p_{1}+p_{2}+p_{3}+p_{4}=-100+60+48-8=0
$$

The emdl off chapter $\mathbb{1}$

