

الجامعة السورية الخاصة SYRIAN PRIVATE UNIVERSITY

كلية هندسة الجاسوب والمعلوماتية **Computer and Informatics Engineering**

Faculty

Electric Circuits I

Dr. Eng. Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy,

istamo48@mail.ru

DC Circuits Course Outline

- **1.** Basic Concepts
- **2.** Basic Laws
- **3.** Methods of Analysis
- 4. Circuit Theorems
- **5.** Operational Amplifiers
- 6. Capacitors and Inductors
- 7. First-Order Circuits
- 8. Second-Order Circuits
- 9. Magnetic Circuits

Assessment

Coursework:	50%	
Activity	10%	
2 Tests	20%	(10% each)
Practice	20%	
Examination:	50%	

To pass the course, at least 25% of coursework AND examination marks are required.

Book List

Text books

- 1. C. K. Alexander and M.N.O. Sadiku. Fundamentals of Electric Circuits. 6-th Ed., McGraw-Hill, 2017.
- 2. Robert L. Boylested, Introductory Circuit Analysis, (7/9/10) 11-th Ed. Prentice Hall, 2007.

References

- 1. James W. Nilsson. Electric circuits, 9-th Ed. Prentice Hall, 2011.
- Allan H. Robbins and Wilhelm C. Miller. Circuit Analysis: Theory and Practice, Fifth Edition. Cengage Learning 2013.

Chapter 1 Basic Concepts

- 1.1 Systems of Units.
- 1.2 Electric Charge.
- 1.3 Current
- 1.4 Voltage.
- 1.5 Power and Energy.
- 1.6 Circuit Elements.

1.1 System of Units

Six basic units

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	Kg
Time	second	S
Electric current	ampere	А
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd

The derived units commonly used in electric circuit theory

Quantity	Unit	Symbol
electric charge electric potential resistance conductance inductance capacitance frequency	coulomb volt ohm siemens henry farad hortz	C V Ω S H F
force energy, work power magnetic flux magnetic flux density	nertz newton joule watt weber tesla	N J W Wb T

600,000,000 mm 600,000 m 600 km

Factor	Prefix	Symbol
10^{9} 10^{6} 10^{3} 10^{-2} 10^{-3} 10^{-6} 10^{-9} 10^{-12}	giga mega kilo centi milli micro nano pico	G M k c m µ n P

Decimal multiples and submultiples of SI units

1.2 Electric Charges

- Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- The charge *e* on one electron is negative and equal in magnitude to 1.602×10^{-19} C which is called as *electronic charge*.
- In 1 C of charge, there are $1/(1.602 \times 10^{-19}) = 6.24 \times 10^{18}$ electrons.
- The charges that occur in nature are integral multiples of the

electronic charge $e = -1.602 \times 10^{-19} \text{ C}$.

1.3 Current

- **Conducting process**: positive charges (+) move in one direction while negative charges (–) move in the opposite direction. This *motion* of charges creates electric current.
- The current flow is the *movement* of *positive charges*.

- Electric current is the time rate of change of charge, measured in amperes (A).
- Electric current i = dq/dt. The unit of ampere can be derived as 1 A = 1C/s.
- The **charge** transferred between time t₀ and t is obtained by

$$Q = \int_{t_0}^t i dt$$

23-Sep-18

1.3.1 Types of Current

- A direct current (dc) is a current that remains constant with time, Fig. (a).
- An alternating current (ac) is a current that varies sinusoidally with time. (reverse direction), Fig. (b).
- A current may be represented positively or negatively, Fig. (c).

(a)

(b)

-5 A

(c)

How much charge is represented by 4,600 electrons? *Solution:*

Each electron has -1.602×10^{-19} C . Hence 4,600 electrons will have

 $-1.602 \times 10^{-19} C/\text{electron} \times 4600 \text{electrons} = -7.369 \times 10^{-16} C$

Example 1.2

The total charge entering a terminal is given by $q = 5t \sin(4\pi t)$ mC. Calculate the current at t = 0.5 s. Solution:

> $i = \frac{dq}{dt} = \frac{d}{dt} (5t\sin(4\pi t))mC / s = (5\sin(4\pi t) + 20\pi t\cos(4\pi t))mA$ $t = 0.5s \Rightarrow i = 5\sin(2\pi) + 10\pi\cos(2\pi) = 0 + 10\pi = 31.42 \text{ mA}$

23-Sep-18

Determine the total charge entering a terminal between t = 1 s and t = 2 s if the current passing the terminal is $i = (3t^2 - t)$ A. *Solution:*

$$Q = \int_{t=1}^{2} i dt = \int_{t=1}^{2} (3t^{2} - t) dt = \left(t^{3} - \frac{t^{2}}{2}\right)_{1} = (8 - 2) - (1 - \frac{1}{2}) = 5.5 \text{ C}$$

Example 1.4

A conductor has a constant current of 5 A. How many electrons pass a fixed point on the conductor in one minute? *Solution:*

Total no. of charges pass in 1 min is given by:

5 A = (5 C/s)(60 s/min) = 300 C/min

Total no. of electronics pass in 1 min is given

 $\frac{300 \text{ C/min}}{1.602 \times 10^{-19} \text{ C/electron}} = 1.87 \times 10^{21} \text{ electrons/min}$

23-Sep-18

1.4 Voltage

Voltage (or potential difference) is the energy required to move
 a unit charge from a reference point *a* (-) to another point *b* (+),
 measured in volts (V).

Mathematically, $v_{ab} = \frac{dw}{dq}$ (Volt) w is energy in joules (J) and q is charge in coulomb (C).

The plus (+) and minus (-) signs are used to define reference voltage polarity.

23-Sep-18

Dr. Hassan Ahmad

 v_{ab}

0h

• Electric voltage, v_{ab} , is always across the circuit element or between two points in a circuit.

9 V

-9 V

(b)

- $v_{ab} > 0$ means the potential of *a* is higher than potential of *b*.
- $v_{ab} < 0$ means the potential of *a* is lower than potential of *b*.

23-Sep-18

1.5 Power and Energy

- **Power** is the time rate of expending or absorbing energy, measured in watts (W). $p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi$
- Mathematical expression:
- The power *p* is a time-varying quantity and is called the instantaneous power.
- **Passive sign convention:**
 - Fig. (*a*): the element is absorbing power.
 - Fig. (*b*): the element is supplying power.

+ Power absorbed = - Power supplied

23-Sep-18

Dr. Hassan Ahmad

15

The law of conservation of energy:

$$\sum p = 0$$
 at any time

- Energy is the capacity to do work, measured in joules (J).
- Mathematical expression $W = \int_{t_0}^t p \, dt = \int_{t_0}^t v i \, dt$
- The electric power utility companies measure energy in watthours (Wh), where 1 Wh = 3600 J

An energy source forces a constant current of 2 A for 10 s to flow through a light bulb. If 2.3 kJ is given off in the form of light and heat energy, calculate the voltage drop across the bulb.

Solution:

• The total charge is $\Delta q = i\Delta t = 2 \times 10 = 20 \text{ C}$

The voltage drop is $v = \frac{\Delta w}{\Delta q} = \frac{2.3 \times 10^3}{20} = 115 \text{ V}$

Find the power delivered to an element at t = 3 ms if the current entering its positive terminal is $i = 5\cos(60\pi t)$ A, and the voltage is: **Solution:** a) v = 3i; b) v = 3di/dt

a) The voltage is $v = 3i = 15 \cos 60\pi t$; hence, the power is

 $p = vi = 75\cos^2(60\pi t) \text{ W}$

At t=3 \rightarrow $p = 75\cos^2(60\pi \times 3 \times 10^{-3}) = 53.48 \text{ W}$

b) We find the voltage and the power as

 $v = 3\frac{di}{dt} = 3(-60\pi)5\sin 60\pi t = -900\pi\sin 60\pi t$ V

 $p = vi = -4500\pi \sin 60\pi t \cos 60\pi t W$

 $p = -4500\pi \sin 0.18\pi \cos 0.18\pi W$

 $= -14137.167 \sin 32.4^{\circ} \cos 32.4^{\circ} = -6.396 \text{ kW}$

23-Sep-18

At t=3 \rightarrow

How much energy does a 100-W electric bulb consume in two hours?

Solution:

 $w = pt = 100(W) \times 2(h) \times 60(min/h) \times 60(s/min)$ 720000 J = 720 kJ

This is the same as

 $w = pt = 100 \text{ W} \times 2 \text{ h} = 200 \text{ Wh}$

1.6 Circuit Elements

There are two types of elements:

- An active element is capable of generating energy.
- A passive is not capable of generating energy.
- Examples of passive elements are resistors, capacitors, and inductors.
- Examples of active elements include generators, batteries, and operational amplifiers.
 - The most important active elements are voltage or current sources that generally deliver power to the circuit connected to

them.

1.6.1 Kinds of sources

- **1. Ideal independent source** is an active element that provides a specified voltage or current that is completely independent of other circuit elements.
 - Physical sources such as batteries and generators.
 - Symbols for independent voltage sources:
 - Fig.(a), used for constant or timevarying voltage,
 - Fig.(b), used for constant voltage (dc).
 - Symbol for independent current source, Fig. (c), where the arrow indicates the direction of current *i*.

 \boldsymbol{v}

- 2. Ideal dependent (or controlled) source is an active element in which the source quantity is controlled by another voltage or current.
 - Dependent sources are usually designated by **diamond-shaped** symbols:
 - Fig.(a) dependent voltage source,
 - Fig. (b) dependent curent source.

- There are four possible types of dependent sources
 - 1. A voltage-controlled voltage source (VCVS).
 - 2. A current-controlled voltage source (CCVS).
 - 3. A voltage-controlled current source (VCCS).
 - 4. A current-controlled current source (CCCS).

(b)

(a)

Calculate the power supplied or absorbed by each element in Fig. Solution $I = 5 A R_2$

We apply the sign convention for power. For p_1 , the 5-A current is out of the positive terminal (or into the negative terminal);

hence, $p_1 = 20(-5) = -100$ W (Supplied power) For p_2 and p_3 , the current flows into the positive terminal of the element in each case. $p_2 = 12(5) = 60$ W (Absorbed power); $p_3 = 8(6) = 48$ W (Absorbed power)

20 V

For p_4 , we should note that the voltage is 8 V (positive at the top), the same as the voltage for p_3 since both the passive element and the dependent source are connected to the same terminals. (Remember that v oltage is always measured across an element in a circuit.) Since the current flows out of the positive terminal, $p_4 = 8(-0.2I) = 8(-0.2 \times 5) = -8W$ (Supplied power)

$$\sum p_i = p_1 + p_2 + p_3 + p_4 = -100 + 60 + 48 - 8 = 0$$

23-Sep-18

Dr. Hassan Ahmad

6 A

8 V P4

0.21

 p_3

The end of chapter 1